Compressive Sampling for Power Spectrum Estimation
نویسندگان
چکیده
Compressive sampling is a well-known approach to reconstruct sparse signals based on a limited number of measurements. In spectrum sensing applications for cognitive radio though, only reconstruction of the power spectrum of the signal is required, instead of the signal itself. In this paper, we present a new method for power spectrum reconstruction based on samples produced by a sub-Nyquist rate sampling device. The stationary assumption on the received analog signal causes the measurements at the output of the compressive sampling block to be cyclo-stationary, or the measurement vectors to be stationary. We investigate the relationship between the autocorrelation matrix of the measurement vectors and that of the received analog signal, which we represent by its Nyquist rate sampled version. Based on this relationship, we are able to express the autocorrelation sequence of the received wide sense stationary signal as a linear function of the vectorized autocorrelation matrix of the measurement vectors. Depending on the compression rate, we can present the problem as either over-determined or under-determined. Our focus will be mainly on the over-determined case, in which the reconstruction does not require any additional constraints. Two types of sampling matrices are examined, namely complex Gaussian and multi-coset sampling matrices. For both of them, we can derive conditions under which the over-determined system will result in a unique solution for the power spectrum by adopting a simple least squares (LS) algorithm. In the case of multi-coset sampling, further improvement on the quality of the power spectrum estimates can be attained by optimizing the condition of the sampling matrix.
منابع مشابه
Compressive and Noncompressive Power Spectral Density Estimation from Periodic Nonuniform Samples
This paper presents a novel power spectral density estimation technique for band-limited, wide-sense stationary signals from sub-Nyquist sampled data. The technique employs multicoset sampling and incorporates the advantages of compressed sensing (CS) when the power spectrum is sparse, but applies to sparse and nonsparse power spectra alike. The estimates are consistent piecewise constant appro...
متن کاملCompressive sampling for energy spectrum estimation of turbulent flows
Recent results from compressive sampling (CS) have demonstrated that accurate reconstruction of sparse signals often requires far fewer samples than suggested by the classical Nyquist–Shannon sampling theorem. Typically, signal reconstruction errors are measured in the l norm and the signal is assumed to be sparse, compressible or having a prior distribution. Our spectrum estimation by sparse o...
متن کاملCompressive Power Spectral Analysis
In several applications, such as wideband spectrum sensing for cognitive radio, only the power spectrum (a.k.a. the power spectral density) is of interest and there is no need to recover the original signal itself. In addition, high-rate analogto-digital converters (ADCs) are too power hungry for direct wideband spectrum sensing. These two facts have motivated us to investigate compressive wide...
متن کاملA Study on Cooperative Compressive Wideband Power Spectrum Sensing
In the wideband regime, direct spectrum estimation requires the use of power hungry high-rate analog-to-digital converters to satisfy the required high Nyquistrate. While compressive sampling is popular for perfect reconstruction of sparse signals sampled below the Nyquist rate, for some applications, such as spectrum sensing for cognitive radio, perfect signal reconstruction is an overkill sin...
متن کاملCompressive Power Spectral Analysis Ph.D. Thesis
In several applications, such as wideband spectrum sensing for cognitive radio, only the power spectrum (a.k.a. the power spectral density) is of interest and there is no need to recover the original signal itself. In addition, high-rate analogto-digital converters (ADCs) are too power hungry for direct wideband spectrum sensing. These two facts have motivated us to investigate compressive wide...
متن کامل